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Abstract. Halley conjectured that the AB percolation probability function attains its 
maximum at p = 4, and that consequently infinite AB percolation is impossible on a bipartite 
graph whose standard site percolation critical probability is greater than 4. We produce 
counterexamples that demonstrate that both conjectures are false. In fact, for any positive 
integer N, a graph may be constructed which has at least N AB percolation transitions. 

1. Introduction 

Let the vertices of an infinite lattice graph G be independently labelled A with 
probability p and B with probability 1 - p .  Connect adjacent vertices of G which have 
opposite labels with a bond, while adjacent vertices with the same labels are not 
connected. This variant of the percolation model was introduced by Mai and Halley 
(1980), as ‘AB percolation’, for the study of gelation and polymerisation processes, 
and independently by Sevsek et a1 (1983) as ‘antipercolation’, for the study of antifer- 
romagnetism. 

An edge of G is an AB bond if the endpoints have different labels. A path is an 
AB path if all its edges are AB bonds. The AB cluster containing a vertex U, denoted 
Wt”, is the set of all vertices that may be reached from U through an AB path. The 
number of vertices in W t B  is denoted by 1 WtB1. Define the A B  percolation probability 
by 

et”( p ,  G) = Pp[l WtBI = +a] 
where P, denotes the probability measure when the parameter value is x. Halley (1983) 
showed that the AB percolation probability is symmetric about i for any graph G: 

for all p E [0, 11 and all vertices U E G. If G is connected, the set of values p E [0, 11 
for which e:”( p ,  G) > 0 is independent of the choice of U. A value of p which separates 
intervals where e t B >  0 and e tB  = 0 is an AB percolation threshold. 

Halley (1983) considered AB percolation on bipartite graphs. A graph G is bipartite 
if there exists a partition of the vertex set into two sets VI and V, such that every edge 
of G has one endpoint in VI and one endpoint in V, .  An alternate characterisation 
is that G is bipartite if and only if every cycle in G has an even number of edges. 
Halley showed that, if G is a bipartite graph with standard site percolation critical 
probability greater than t ,  then AB percolation does not occur when p = i: et”(+, G) = 0. 
He conjectured that the AB percolation probability attains its maximum value when 

et”( p ,  G) = etB( 1 - p ,  G) 
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p = 5 .  If true, this would imply a second conjecture: that infinite AB percolation clusters 
are impossible for all p E [0, 11 on a bipartite graph G which has site percolation critical 
probability greater than 4. If the second conjecture were true, the AB percolation 
existence problem for bipartite graphs would be nearly settled, since Wierman (1988a) 
showed that AB percolation exists on any graph with standard site percolation critical 
probability strictly less than 4. 

Previous results are consistent with Halley’s conjectures. Appel and Wierman 
(1987) gave the first rigorous proof that infinite AB percolation does not occur for any 
parameter value in a certain class of bipartite planar graphs (including the square 
lattice). If G is a bipartite graph with bipartition sets V, and V,, construct a graph 
H, from each V,  by joining U and U in V,  if and only if U and U have a common 
neighbour in G. Denoting the classical site percolation critical probability of a graph 
H by p , ( H ) ,  Appel and Wierman showed that AB percolation is impossible on a 
bipartite graph G if pc(  H I )  +p , (  H 2 )  > 1, and also if this sum equals one under certain 
symmetry and periodicity conditions on G. For example, their results show that AB 
percolation is impossible on the hexagonal and square lattices. Wierman ( 1988b) 
showed that AB percolation is impossible on a bipartite graph G if pc(H, )  +p , (H, )  = 1, 
without additional conditions. Furthermore, he exhibited some bipartite graphs for 
which AB percolation is impossible in an interval containing 5 ,  but for which AB 
percolation was not ruled out at all other values of p .  

In 9 2, we provide a simple construction which produces bipartite graphs with 
standard percolation critical probability strictly greater than 4, for which we show that 
AB percolation occurs at a value po # 3. These graphs are counterexamples to both of 
Halley’s conjectures. The graphs constructed for the counterexamples are artificial or 
‘non-physical’. We know of no lattice in which all sites are indistinguishable for which 
this behaviour occurs. 

Note that the probability that an edge in G is an AB bond, as well as the expected 
proportion of AB bonds in G, is equal to p (  1 - p ) ,  which is maximised at p = 4 and 
monotonic on each side of $. Thus, our examples show that the probability of an AB 
infinite cluster is not a monotonic function of either of these quantities. 

A surprising result is proved in 9 3. Given any finite set of points { p , }  in($, 1) and 
constants 6, > 0, a graph may be constructed for which AB percolation occurs at each 
p ,  and does not occur at p unless p ,  - 6, < p  < p ,  + 6, for some i. A consequence of this 
result is that, for any positive integer N, there exists a graph which has at least N AB 
percolation thresholds. 

These examples how that the behaviour of AB percolation models can be quite 
different from that of ordinary site or bond percolation models. The existence of 
multiple AB percolation thresholds also raises questions concerning equality or 
inequality of various critical exponents at all the thresholds. 

2. A counterexample 

We begin with a simple counterexample to Halley’s conjectures, which illustrates 
aspects of our construction and proof technique in 9 3. 

We construct the graph G( k )  from the square lattice by replacing each edge by a 
set of 2k paths of two edges connecting the two endpoints of the original edge in the 
square lattice (see figure 1). For each k L 1, G ( k )  is bipartite, with the inserted vertices 
forming one bipartition set and the original square lattice vertices forming the other. 
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Figure 1. A portion of the graph G(3), formed by replacing each edge of the square lattice 
by six paths of length two. The shaded region contains the twelve inserted vertices which 
are associated with the square lattice site in the centre of the region. 

In the standard site percolation model on G (  k), any infinite open path must contain 
an infinite open path in the original square lattice. Since the site percolation critical 
probability of the square lattice is strictly greater than f, we have pc( G( k ) )  > 4 for all k. 

Thus, G ( k )  satisfies the hypotheses of Halley's conjectures. By Halley's (1983) 
result, there is no AB percolation on G (  k )  when p = f . Since the critical probability 
of the graph constructed from one bipartition set has critical probability strictly greater 
than f ,  the result of Wierman (1988b) shows that AB percolation does not occur on 
an interval containing f. We will now prove that AB percolation does exist on G ( k )  
if k 3 1 5 .  

Of the 2k vertices inserted to replace each edge in the square lattice to obtain G( k), 
associate k with each of the endpoint vertices. For an AB percolation model on G( k), 
define a standard percolation model on the square lattice by declaring each vertex to 
be open if it is labelled A and at least one of the associated vertices for each of its 
four edges is open. An infinite AB cluster exists on G( k) if there is an infinite open 
cluster in the square lattice site percolation model, which occurs if p [  1 - p k I 4  > - 0.7071 > 
p , ( S ) .  The function p[1 -pkI4 is maximised at p = (1 +4k)- 'Ik,  with a maximum value 
of (1+4k)-'Ik[4k/(1 +4k)I4. Since the maximum value is greater than 0.7071 for 
k 3 15, AB percolation exists on G(k)  for k 3 15. 

This construction can be applied with any graph G substituted for the square 
lattice. For any E > 0, by choosing the original graph to have site percolation critical 
probability greater than 1 - E ,  it produces a graph with AB percolation at a point in 
(0, E )  and a point in (1 - E, l ) ,  but no AB percolation in [ E ,  1 - E ] .  Thus there exist 
graphs on which AB percolation exists, but the length of the central interval of no AB 
percolation is as close to one as desired. 

3. Existence of multiple thresholds 

Our main result shows that there exists a graph with any specified number of AB 
percolation phase transitions, with the transitions occurring in specified intervals. 
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The key step in the proof is the construction of graph structures which essentially 
are traversed by AB paths only when p is near a selected value. Let S = (F ,  U, v )  be 
a triple, where F is a connected graph and U and U are distinguished vertices of F. 
Let H ( S )  {HB(S) respectively} denote the event that there exists an AB path from a 
neighbour of U to a neighbour of v {with those particular neighbours of U and U 
labelled B} when p is the parameter of the model. For p E [i, 11,  S > 0, and E > 0, S 
will be called ( p ,  6, E )  selector if 

Pp[HB(S)I > 1 - E 

and for all x 5 4 such that Ix -pi  > 6, 

p x  H ( S )  1 < E*  

Lemma. There exists a ( p ,  6, E )  selector for every p E (i, l), S > 0 and E > 0. 

Prooj We wish to construct a ( p ,  6, E )  selector for fixed p E (i, l), S > 0 and E > 0. For 
convenience, we give the argument for a rational number p. Then there exist relatively 
prime integers i and j such that p = j / (  i + j ) ,  with j > i since p > 4. 

We now describe a family of graphs which provide selectors for p. The parameters 
1, m and n that appear will be chosen later. The basic unit of the selector is constructed 
from a path v o ,  U,, u 2 , .  . . , vZn,+l of length 2nj + 1 ,  by replacing each of the first n ( j  - i )  
vertices with odd indices by m vertices, each connected to the previous and next 
vertices in the sequence. The selector Sf,m,n = (Gf,,,,, a, 6) consists of 1 copies of this 
basic unit connected in parallel, with common initial vertex a and common final vertex 
b (see figure 2 ) .  

Denote the probability that there exists an AB path connecting vertices adjacent 
to a and 6 in a particular basic unit by 

gn,m ( p )  = pn' ( 1  - p ) " ' [  1 (1 - p ) " ]  n ( ' - I )  + ( 1  - p ) n ' p " l [ l  - p m ] n ( ' - l ) *  

Letting h , ( x )  = 1 - (1 - x ) ~ ,  we have 

P p [ H ( S , m , n ) I  = h / ( g n , m )  

Figure 2. The element Sr,m,n of the set of possible selectors for p =2.  In this example, for 
i = l  a n d j = 3 , w e h a v e  / = 3 , m = 6 a n d n = l .  
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and, using only the first term of g,,,, 

P,[H,(S,,,,,)]= hr{p"J(l -p)"'[l-(l  -p)"J-"}. 

Our construction was motivated by the fact that g( p )  = pJ( l  - p ) '  attains its unique 
maximum at j /  ( i  + j )  = p and is monotonic on each side of p .  We will see later that 
the relevant behaviour of g,,,(x) is essentially the same as that of g"(x),  so we begin 
by choosing n and 1 to satisfy conditions involving g(x).  

We now wish to determine n and I such that both 

l - [ l -g(X)"-g( l -x)"] '<E (*) 

1 -[1 -g(p)"]'> 1 - E.  

zlog[l-2g(x,)"]>log(l-E) 

for x & [ p - S , p + 6 ]  and 

(**I 
For inequality (*), it is sufficient to show that 

where xo denotes either p - 6 or p + 6, whichever provides the largest value of g. Using 
1 - x < ewx, this is satisfied if 

1 < -[log( 1 - &)]/2g(Xo)". 

Inequality (**) is equivalent to 

I log[l-g(p)"]<log & 

which, using 1 - x > e-*' for x > 0 sufficiently small, is satisfied if 

I >  -[log(E)l/2g(p)"* 

Thus it is possible to choose 1 to satisfy both (*) and (**) if 

log(&)/log(l - E )  < g(p)"/dxo)". (***I 
Since g( p )  > g(xo), the ratio on the left can be made arbitrarily large by choosing n 
sufficiently large. Thus, choose n so that (***) holds and then I to satisfy both (*) 
and (**). 

We now return to the exact probability of passage through the selector. Note that, 
for any m and any x & [ p - 6, p + 61, 

gn,m(x><g(X)"+g(l-x)" C2g(xo)" 

and that h,(x) is monotonic increasing. Thus, with the previous choices of n and I ,  
we have 

Px[H(Sr,m,n)I < h,(2g(xo)") E 

for all x g [ p - 6, p + 61, independently of the choice of m. 
Note also that g,,,(p) 2 g(p)"[l-(1 -p)m]"(J-i). Since h,(x) is continuous and 

h,(g(p)") > 1 - E, we may choose m sufficiently large that h,{g( p ) " [  1 - ( 1  -p)"]""-"} > 
1 - E. Then by monotonicity of hl, 

P,[H,(S,,,,.)]~ h,{g(p)"[l -(l-p)m]fl(J-i'}> 1 - E .  
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Theorem. For any positive integer N,  let I , ,  12,  . . . , I N  be a collection of disjoint open 
subintervals of ( t ,  1 ) .  Let p i  E I i ,  1 s is N. There exists an infinite connected graph 
G such that 8tB(pi ,  G) > 0 for all i = 1 , 2 , .  . . , N and OtB(p, G) = 0 for p E (;, 1 )  n 
(U Ii)'* 

Proof: Since each I,  is an open interval, for each pI we may choose 6, so that the 
interval ( p ,  - S,, p I  + 6,) c I , .  Let p *  = min{p,: 1 6  i G N } ,  and choose E such that 
p * (  1 - E ) ~  > f and N E  < sin( n / 1 8 ) .  Replace each edge of the triangular lattice T by a 
graph obtained by identifying the initial vertices and the final vertices of two copies 
of each ( p l ,  6,, E )  selector, i = 1 , 2 , 3 ,  . . . , N. This provides a candidate graph, which 
we now show satisfies the conditions of the theorem. 

To prove non-existence of AB percolation outside of the intervals I , ,  we introduce 
an associated bond percolation model. Consider an edge of the triangular lattice to 
be open if there is an AB path through any of the selectors used to replace that edge. 
For x E (U I1)' ,  x is not in any of the intervals ( p ,  - S, p r  + S), so the probability of an 
AB path through each specific selector is less than E .  Since there are 2 N  selectors, 
the probability that each edge in T is open is at most  NE. By assumption,   NE < 
2 sin( T /  18), which is the critical probability of bond percolation on the triangular 
lattice. Thus, AB percolation is impossible on the constructed graph. 

To show existence of AB percolation at a specific p z ,  associate one of the p ,  selectors 
replacing a given edge with each of the endpoints. Introduce an associated classical 
site percolation model on the triangular lattice by declaring a vertex of T to be open 
if it is labelled A and all of its pI selectors contain AB paths which start at a neighbour 
labelled B (i.e. HB occurs for each selector). Note that if there is an infinite open path 
in T, then there is an infinite AB path in the constructed graph. Since p , ( l - ~ ) ~ 3  
p * (  1 - E ) ~  > 4, which is the site percolation critical probability for the triangular lattice, 
AB percolation occurs at p I .  (Note that we may ignore the other selectors in the 
existence proof, since they only increase the likelihood of an infinite AB cluster.) 

If p is irrational, we may choose a rational number sufficiently close to p that, for 
the corresponding i and j ,  g ( p )  is strictly greater than the maximum of g ( p  - 6 )  and 
g( p + S), then may apply the argument above. 

Note that all of the selectors are planar, so all the graphs constructed in our proof are 
planar graphs. To include 4 in the set {pi}, (i, 6, E )  selectors may be constructed by 
the same procedure, as noted above. However, to obtain AB percolation in a neighbour- 
hood of ;, one must start with an underlying graph with site percolation critical 
probability strictly less than . If such a graph is periodic and has one axis of symmetry, 
then it cannot be planar. However, Wierman (1984) has constructed fully triangulated 
planar graphs with site percolation critical probability strictly less than f, so again a 
planar example may be constructed. 
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